Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Front Med (Lausanne) ; 9: 837258, 2022.
Article in English | MEDLINE | ID: covidwho-1952364

ABSTRACT

Purpose: The objective of the present study was to provide a detailed histopathological description of fatal coronavirus disease 2019 (COVID 19), and compare the lesions in Intensive Care Unit (ICU) and non-ICU patients. Methods: In this prospective study we included adult patients who died in hospital after presenting with confirmed COVID-19. Multiorgan biopsies were performed. Data generated with light microscopy, transmission electron microscopy (TEM) and RT-PCR assays were reviewed. Results: 20 patients were enrolled in the study and the main pulmonary finding was alveolar damage, which was focal in 11 patients and diffuse in 8 patients. Chronic fibrotic and inflammatory lesions were observed in 18 cases, with acute inflammatory lesions in 12 cases. Diffuse lesions, collapsed alveoli and dystrophic pneumocytes were more frequent in the ICU group (62.5%, vs. 25%; 63%, vs. 55%; 87.5%, vs. 54%). Acute lesions (82%, vs. 37.5%; p = 0.07) with neutrophilic alveolitis (63.6% vs. 0%, respectively; p = 0.01) were observed more frequently in the non-ICU group. Viral RNA was detected in 12 lung biopsies (60%) up to 56 days after disease upset. TEM detected viral particles in the lung and kidney biopsy samples up to 27 days after disease upset. Furthermore, abundant networks of double-membrane vesicles (DMVs, a hallmark of viral replication) were observed in proximal tubular epithelial cells. Conclusion: Lung injury was different in ICU and non-ICU patients. Extrapulmonary damage consisting in kidney and myocardial injury were more frequent in ICU patients. Our TEM experiments provided the first description of SARS-CoV-2-induced DMVs in kidney biopsy samples-a sign of intense viral replication in this organ.

2.
Cell Mol Life Sci ; 79(8): 425, 2022 Jul 16.
Article in English | MEDLINE | ID: covidwho-1935748

ABSTRACT

Positive single-strand RNA (+ RNA) viruses can remodel host cell membranes to induce a replication organelle (RO) isolating the replication of their genome from innate immunity mechanisms. Some of these viruses, including severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), induce double-membrane vesicles (DMVs) for this purpose. Viral non-structural proteins are essential for DMV biogenesis, but they cannot form without an original membrane from a host cell organelle and a significant supply of lipids. The endoplasmic reticulum (ER) and the initial mechanisms of autophagic processes have been shown to be essential for the biogenesis of SARS-CoV-2 DMVs. However, by analogy with other DMV-inducing viruses, it seems likely that the Golgi apparatus, mitochondria and lipid droplets are also involved. As for hepatitis C virus (HCV), pores crossing both membranes of SARS-CoV-2-induced DMVs have been identified. These pores presumably allow the supply of metabolites essential for viral replication within the DMV, together with the export of the newly synthesized viral RNA to form the genome of future virions. It remains unknown whether, as for HCV, DMVs with open pores can coexist with the fully sealed DMVs required for the storage of large amounts of viral RNA. Interestingly, recent studies have revealed many similarities in the mechanisms of DMV biogenesis and morphology between these two phylogenetically distant viruses. An understanding of the mechanisms of DMV formation and their role in the infectious cycle of SARS-CoV-2 may be essential for the development of new antiviral approaches against this pathogen or other coronaviruses that may emerge in the future.


Subject(s)
COVID-19 , Hepatitis C , Endoplasmic Reticulum/metabolism , Hepacivirus/genetics , Humans , RNA, Viral/genetics , RNA, Viral/metabolism , SARS-CoV-2 , Viral Nonstructural Proteins/genetics , Virus Replication
3.
J Clin Med ; 11(2)2022 Jan 14.
Article in English | MEDLINE | ID: covidwho-1625281

ABSTRACT

Since the start of the COVID-19 pandemic, many studies have investigated the humoral response to SARS-CoV-2 during infection. Studies with native viral proteins constitute a first-line approach to assessing the overall immune response, but small peptides are an accurate and valuable tool for the fine characterization of B-cell epitopes, despite the restriction of this approach to the determination of linear epitopes. In this study, we used ELISA and peptides covering a selection of structural and non-structural SARS-CoV-2 proteins to identify key epitopes eliciting a strong immune response that could serve as a biological signature of disease characteristics, such as severity, in particular. We used 213 plasma samples from a cohort of patients well-characterized clinically and biologically and followed for COVID-19 infection. We found that patients developing severe disease had higher titers of antibodies mapping to multiple specific epitopes than patients with mild to moderate disease. These data are potentially important as they could be used for immunological profiling to improve our knowledge of the quantitative and qualitative characteristics of the humoral response in relation to patient outcome.

4.
Vaccines (Basel) ; 9(10)2021 Sep 23.
Article in English | MEDLINE | ID: covidwho-1438755

ABSTRACT

The impact of a third dose of COVID-19 vaccine on antibody responses is unclear in immunocompromised patients. The objective of this retrospective study was to characterize antibody responses induced by a third dose of mRNA COVID-19 vaccine in 160 kidney transplant recipients and 20 patients treated for chronic lymphocytic leukemia (CLL). Prevalence of anti-spike IgG ≥ 7.1 and ≥ 30 BAU/mL after the third dose were 47% (75/160) and 39% (63/160) in kidney transplant recipients, and 57% (29/51) and 50% (10/20) in patients treated for CLL. Longitudinal follow-up identified a moderate increase in SARS-CoV-2 anti-spike IgG levels after a third dose of vaccine in kidney transplant recipients (0.19 vs. 5.28 BAU/mL, p = 0.03) and in patients treated for CLL (0.63 vs. 10.7 BAU/mL, p = 0.0002). This increase in IgG levels had a limited impact on prevalence of anti-spike IgG ≥ 30 BAU/mL in kidney transplant recipients (17%, 2/12 vs. 33%, 4/12, p = 0.64) and in patients treated for CLL (5%, 1/20 vs. 45%, 9/20, p = 0.008). These results highlight the need for vaccination of the general population and the importance of non-medical preventive measures to protect immunocompromised patients.

5.
Cell Mol Life Sci ; 78(7): 3565-3576, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-1384325

ABSTRACT

Many studies on SARS-CoV-2 have been performed over short-time scale, but few have focused on the ultrastructural characteristics of infected cells. We used TEM to perform kinetic analysis of the ultrastructure of SARS-CoV-2-infected cells. Early infection events were characterized by the presence of clusters of single-membrane vesicles and stacks of membrane containing nuclear pores called annulate lamellae (AL). A large network of host cell-derived organelles transformed into virus factories was subsequently observed in the cells. As previously described for other RNA viruses, these replication factories consisted of double-membrane vesicles (DMVs) located close to the nucleus. Viruses released at the cell surface by exocytosis harbored the typical crown of spike proteins, but viral particles without spikes were also observed in intracellular compartments, possibly reflecting incorrect assembly or a cell degradation process.


Subject(s)
SARS-CoV-2/growth & development , Viral Replication Compartments/ultrastructure , Virus Release/physiology , Virus Replication/physiology , Animals , COVID-19/pathology , Cell Line , Chlorocebus aethiops , Microscopy, Electron, Transmission , Spike Glycoprotein, Coronavirus/metabolism , Vero Cells , Viral Replication Compartments/physiology
6.
Cells ; 10(8)2021 08 10.
Article in English | MEDLINE | ID: covidwho-1348607

ABSTRACT

The mechanisms of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) egress, similar to those of other coronaviruses, remain poorly understood. The virus buds in intracellular compartments and is therefore thought to be released by the biosynthetic secretory pathway. However, several studies have recently challenged this hypothesis. It has been suggested that coronaviruses, including SARS-CoV-2, use lysosomes for egress. In addition, a focused ion-beam scanning electron microscope (FIB/SEM) study suggested the existence of exit tunnels linking cellular compartments rich in viral particles to the extracellular space resembling those observed for the human immunodeficiency (HIV) in macrophages. Here, we analysed serial sections of Vero cells infected with SARS-CoV-2 by transmission electron microscopy (TEM). We found that SARS-CoV-2 was more likely to exit the cell in small secretory vesicles. Virus trafficking within the cells involves small vesicles, with each generally containing a single virus particle. These vesicles then fuse with the plasma membrane to release the virus into the extracellular space. This work sheds new light on the late stages of the SARS-CoV-2 infectious cycle of potential value for guiding the development of new antiviral strategies.


Subject(s)
COVID-19/physiopathology , SARS-CoV-2/physiology , Secretory Vesicles/ultrastructure , Virus Replication , Animals , Chlorocebus aethiops , Microscopy, Electron, Transmission , Vero Cells , Virion/physiology
7.
Cell Microbiol ; 23(8): e13328, 2021 08.
Article in English | MEDLINE | ID: covidwho-1142875

ABSTRACT

Annulate lamellae (AL) have been observed many times over the years on electron micrographs of rapidly dividing cells, but little is known about these unusual organelles consisting of stacked sheets of endoplasmic reticulum-derived membranes with nuclear pore complexes (NPCs). Evidence is growing for a role of AL in viral infection. AL have been observed early in the life cycles of the hepatitis C virus (HCV) and, more recently, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), suggesting a specific induction of mechanisms potentially useful to these pathogens. Like other positive-strand RNA viruses, these viruses induce host cells membranes rearrangements. The NPCs of AL could potentially mediate exchanges between these partially sealed compartments and the cytoplasm. AL may also be involved in regulating Ca2+ homeostasis or cell cycle control. They were recently observed in cells infected with Theileria annulata, an intracellular protozoan parasite inducing cell proliferation. Further studies are required to clarify their role in intracellular pathogen/host-cell interactions.


Subject(s)
Host-Pathogen Interactions/physiology , Organelles/microbiology , Organelles/parasitology , Animals , COVID-19 , Cytoplasm/virology , Endoplasmic Reticulum/microbiology , Endoplasmic Reticulum/parasitology , Endoplasmic Reticulum/ultrastructure , Endoplasmic Reticulum/virology , Humans , Organelles/ultrastructure , Organelles/virology , SARS-CoV-2/physiology
8.
Euro Surveill ; 26(3)2021 01.
Article in English | MEDLINE | ID: covidwho-1041125

ABSTRACT

We report the strategy leading to the first detection of variant of concern 202012/01 (VOC) in France (21 December 2020). First, the spike (S) deletion H69-V70 (ΔH69/ΔV70), identified in certain SARS-CoV-2 variants including VOC, is screened for. This deletion is associated with a S-gene target failure (SGTF) in the three-target RT-PCR assay (TaqPath kit). Subsequently, SGTF samples are whole genome sequenced. This approach revealed mutations co-occurring with ΔH69/ΔV70 including S:N501Y in the VOC.


Subject(s)
Base Sequence , COVID-19/epidemiology , Genome, Viral , SARS-CoV-2/genetics , Sequence Deletion/genetics , Spike Glycoprotein, Coronavirus/genetics , France/epidemiology , Humans
9.
Front Med (Lausanne) ; 7: 584036, 2020.
Article in English | MEDLINE | ID: covidwho-914431

ABSTRACT

Background: The coronavirus infectious disease-2019 (COVID-19) pandemic has led to an unprecedented shortage of healthcare resources, primarily personal protective equipment like surgical masks, and N95/filtering face piece type 2 (FFP2) respirators. Objective: Reuse of surgical masks and N95/FFP2 respirators may circumvent the supply chain constraints and thus overcome mass shortage. Methods, design, setting, and measurement: Herein, we tested the effects of dry- and moist-air controlled heating treatment on structure and chemical integrity, decontamination yield, and filtration performance of surgical masks and FFP2 respirators. Results: We found that treatment in a climate chamber at 70°C during 1 h with 75% humidity rate was adequate for enabling substantial decontamination of both respiratory viruses, oropharyngeal bacteria, and model animal coronaviuses, while maintaining a satisfying filtering capacity. Limitations: Further studies are now required to confirm the feasibility of the whole process during routine practice. Conclusion: Our findings provide compelling evidence for the recycling of pre-used surgical masks and N95/FFP2 respirators in case of imminent mass shortfall.

SELECTION OF CITATIONS
SEARCH DETAIL